
uab 2024



What is casual?

In general terms casual is a distributed application server. A platform to 
build applications on top of, that can interact with each other in a 
distributed manner, with or without transactional context. 

Users build logical applications that consist of one or more servers that 
advertise arbitrary named services. Servers are deployed in a domain. 
Domains can be connected with each other, on different machines, in any 
topology.



A server is just an executable with an entry 
point for each advertised service. A server is 
scaled by spawning processes of the 
executable. Hence, servers can be dynamically 
scaled to meet load requirements. Resources 
such as databases can also be associated with 
a server.

A service can call other services, and casual 
will find where these services reside in the 
topology.

…What is casual?



…What is casual?

casual provides a queue implementation together with queue-to-service and 
queue-to-queue forward functionality. 



Why use casual?

The semantics are simple and easy to reason about. 

Applications can be scaled to fit any need. Asynchronous service calls give 
massive concurrency without the hassle of threads.

With the building blocks: services, queues, queue-to-service and queue-to-queue 
all relevant communication patterns can be constructed.

Manage casual in a UNIX-friendly way that enables interoperability with familiar 
tools.



Specifications

casual conforms to the following specifications:

● xa
● xatmi
● tx

These specifications have been proven in low latency, high throughput 
transactional systems for several decades.

https://pubs.opengroup.org/onlinepubs/009680699/toc.pdf
https://pubs.opengroup.org/onlinepubs/009649399/toc.pdf
https://pubs.opengroup.org/onlinepubs/009649599/toc.pdf


1.7

Release notes.

file:///Users/lazan/git/casual/1.7/casual/documentation/release-notes.md



Demo



Managers

casual consists of a few managers. A manager is in essence an 
executable that has a certain area of responsibility.

● casual-domain-manager 
● casual-service-manager
● casual-queue-manager
● casual-gateway-manager
● casual-transaction-manager

The name of the manager indicates their main responsibility. Some of the 
managers delegate responsibility to subprocesses.



casual-domain-manager

● handle the domain configuration
● startup and shutdown of the domain
● scale instances and other 

configuration updates
● answer process lookup requests
● casual-domain-discovery

○ coordinates service/queue 
discovery to and/or from other 
domains



casual-service-manager

● keep track of addresses to services, including remote
● answer service lookup requests



casual-queue-manager

● keep track of addresses to queues, including remote
● answer queue lookup requests
● manage queue-groups and forward-groups
● casual-queue-group

○ manages configured queues for the group
● casual-queue-forward-group

○ a forward dequeues from a queue and call/enqueue to a service or queue
○ manages configured service/queue-forwards for the group



casual-gateway-manager

● manage inbound and outbound groups
● casual-gateway-outbound-group

○ connects to configured addresses
○ route internal messages/request to the correct connection

● casual-gateway-inbound-group
○ listen on configured addresses
○ route external messages/requests to the correct recipient in the domain

● casual-gateway-outbound/inbound-reverse-group
○ same as regular outbound/inbound but the connection phase is reversed. outbound listen, inbound connects.



casual-transaction-manager

● coordinate distributed transactions
● manage resource proxies
● casual-resource-proxy

○ interact with linked resource via XA
● act as a resource on behalf of other domains



Communication model

Communication between entities (processes) is done with messages passing. 
Every entity has an inbound-ipc-device that others can pass messages to. 

All communication is done asynchronously, hence there could be a lot of 
messages in flight within any given time.

We’ll go through the most significant communication patterns. These will help build 
a mental model that increases understanding of how casual works.



Request-Reply

Caller sends a message to the ipc-address of the callee 
entity. The request message has the ipc-address of the 
caller. Callee will reply to the caller address.



Fan-Out

Some scenarios require requests to multiple entities, 
for instance when the transaction-manager sends 
prepare/commit/rollback to all involved resources for a 
transaction.



Events

Some messages are one way propagation, which we 
mostly call events. For instances when a process dies, 
domain-manager sends process-died events to all 
entities that have registered that they are interested in 
the event.


